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Abstract--An explicit algebraic heat-flux (EAHF) model is derived by invoking the assumption of equi- 
librium turbulence for both the velocity and the thermal fields. Further modifications are achieved by 
applying an approximation technique to render the implicit heat flux vector relation explicit. Thus derived, 
the heat flux vector yields two terms. The first term is identical to that given by a simple thermal eddy 
diffusivity rrtodel, while the second term provides a correction to the streamwise heat flux. This second 
term is non-zero even when the streamwise mean temperature gradient is zero. It allows the modeling of 
the generation of a streamwise heat flux due to the interaction of the turbulent eddies with the mean 
temperature gradient normal to the streamwise direction. Previously derived near-wall corrections to the 
equations of the temperature variance and its dissipation rate are found to be equally valid for the EAHF 
model. The near-wall EAHF model is validated against direct numerical simulation data and experimental 
measurements. In addition, the calculations are also compared with those obtained from a second-order 
model and the simple thermal eddy diffusivity model. Two different near-wall Reynolds-stress models are 
used to calculate the velocity field and they are found to have little effect on the thermal field predicted by 
the EAHF model. In general, the results for the temperature field are in good agreement with data and are 
essentially unaffected by the second term in the EAHF model. On the other hand, the prediction of the 
streamwise heat flux is in good agreement with that given by a second-order model which correlates well 

with data. 

INTRODUCTION 

Early work on turbulence modeling for wall-bounded 
flows with heat transfer is based on zero-equation 
models for the velocity field and the assumption of  a 
constant Pr t to relate - u~0 to - u--~.. At a higher closure 
level, two-equation 3aaodels or even second-order models 
have been used for 1:he velocity field, while the assump- 
tion of  a constant Pr t is still invoked to model the 
turbulent heat fluxes [1]. Most  of  these approaches 
consist of  using wall functions to bridge the gap 
between the region in which the model  is valid and 
the wall. While this approach has been very successful 
for simple flows, i~. is not  clear how to derive these 
wall functions for more complex flows. Furthermore,  
if  the surface heat flux is to be evaluated properly, it 
is particularly important  to have detailed knowledge 
of  the velocity ancl temperature fields in the region 
very close to the wall. For  simple flows, quite often, 
good agreement between these simple model cal- 
culations and data has been achieved for Pr near 
unity. For  Pr  departing from unity, however, P F  t is 
found to depend on Pr [2]. No  generally accepted 
correlation for Prt over a wide range of  Pr has been 
found and this could be the result of  the simple 
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approach failing to capture the essential physics of  the 
problem. 

Recent direct numerical simulation (DNS) of  wall 
turbulence with and without heat transfer shows that 
P r  t is not  constant across the flow field [3-5]. In order 
to relax the constant Pr t assumption, several near-wall 
models have been proposed. These models solved the 
transport Reynolds equations for the velocity and 
temperature fields [6-8] with appropriate corrections 
made to allow them to integrate directly to the wall. 
The model of  [6] is a full second-order closure based 
on the second-order velocity field model  of  [9], while 
the models of  [7] and [8] are near-wall two-equation 
models solving for 02 and eo and invoking a gradient 
transport assumption for the heat fluxes. Although 
these models are quite sucessful in general, certain 
deficiencies could still be identified. Among  these are 
the inabilities of  the models to predict flows with Pr 

significantly different from unity [6, 8], the incorrect 
asymptotic behavior calculated for the temperature 
field near a wall [7], the assumption of  zero wall tem- 
perature fluctuations [6-8] and the inability to cor- 
rectly predict the streamwise heat flux [7, 8]. Many 
practical flows of  interest have Pr values significantly 
different from unity and various fluid-solid com- 
binations will give rise to vastly different wall tem- 
perature fluctuations, especially in situations where 
heat transfer rates are high. Furthermore,  in certain 
types of  heat transfer problems and buoyant  flows, 

455 



456 R.M.C. SO and T. P, SOMMER 

b,j Reynolds stress anisotropy tensor, 
b~, = ~ / ( 2 k ) -  (1/3)6~ 

Cf skin friction coefficient, Cf = 2Zw/pUZm 
Ch heat transfer coefficient, 

Ch = qw/ {Poo U~cp(19w-- 19aw)} 
D pipe diameter 
D 0 production tensor, 

h channel half-width 
H channel width 
k turbulent kinetic energy 
k ÷ normalized turbulent kinetic energy, 

k + = k/u~ 
Nu Nusselt number, 

Nu = qwD(19w-- Om) / (pCpO0 
n~ ith component of the unit normal 

vector positive outward from wall 
ff production of k due to mean shear 
P~j production of Reynolds stresses due 

to mean shear, 

Po production of temperature variance 
due to mean temperature gradient, 
Po = -- UkO(OO/t3Xk) 

P* production of temperature variance 
due to streamwise mean 
temperature gradient 

Pr Prandtl number 
Pr~ turbulent Prandtl number 
qw mean wall heat flux 
R time scale ratio, R = (02/eo)/(k/e) 
Re Reynolds number based on bulk 

velocity, Re = UmD/v or Re = UmH/v 
Ret turbulent Reynolds number, 

Ret = kZ/(ve) 
Re~ Reynolds number based on friction 

velocity, Re~ = u~h/v or Re, = u,D/2v 
St Stanton number, St = Nu/(RePr) 
g,) mean strain rate tensor, 

~j  = (1/2) (8 O,/8xj + O O/Ox3 
O i ith component of the Reynolds 

averaged velocity 
u~ ith component of the fluctuating 

velocity 
U ÷ mean velocity normalized with u~ 
Um bulk mean velocity 
u, v, w Reynolds fluctuating velocities along 

x-, y- and z-directions 

NOMENCLATURE 

Ur 

- -  U i u j  

- -  !~i0 
- - ~ +  

- -vO + 

Xi 
x, y, z 

y+ 

friction velocity, u~ = x / ~  
Reynolds-stress tensor 
Reynolds-heat-flux vector 
normalized turbulent shear stress, 

- ~ +  = - h ~ l u ~  

normalized turbulent heat flux, 
- vO + = - vO/(u~193 

ith component of the coordinate 
coordinates in streamwise, wall- 

normal and transverse directions 
normalized wall-normal coordinate, 
y+ = yuJv. 

Greek symbols 
thermal diffusivity 

~t thermal eddy diffusivity 
dissipation rate of k 

g modified dissipation rate, 
g = e-2v(~x/k/t?y) 2 

modified dissipation rate, 
g = ~-- 2vk/y 2 

e+ normalized dissipation rate, 
~+ = ~v/u 4 

eej dissipation rate tensor 
e0 dissipation rate of temperature 

variance, e0 = ~(OO/Oxk)(aO/Oxk) 
go modified dissipation of temperature 

variance, go = ~0 -- ~(t~x/0 2/Oy) 2 
e~' modified dissipation of temperature 

variance, e* = e0 - ~ ( ~ - -  O~)/y 2 
v fluid kinematic velocity 
Yt eddy viscosity 

Reynolds averaged temperature 
Om bulk mean temperature ; 

@)m = I G~ dA/~ @dA 
19 ÷ normalized mean temperature, 

19+ = ( O - ® w ) / O ~  
19~ friction temperature, 19~ = qw/(pcpuO 
0 fluctuating temperature 
Orms root mean square of the temperature 

fluctuations, normalized with 19~ 
02 temperature variance 
rw wall shear stress 

near-wall correction to e equation 
~0 near-wall correction to e0 equation 
e3~j mean rotation rate tensor, 

~,j  = ( 1 / 2 ) ( a t Y , / O x j -  ~ O / ~ x , ) .  

the streamwise heat flux plays an important role in 
determining the flow characteristics. Therefore, these 
deficiencies need to be addressed if practical problems 
in heat transfer are to be calculated correctly. 

According to [10], where the performance of eight 
different near-wall second-order velocity field models 
against recent DNS data [l l, 12] is analysed, only 

asymptotically correct models could yield predictions 
of the turbulence field similar to that given by the 
DNS data. Most important of all, if the near-wall 
model is not asymptotically correct, it would fail to 
yield a correct value for the yon Karman constant, 
which is crucial to the prediction of wall-bounded 
flows. These conclusions are also found to be equally 
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applicable for two-equation models [13]. In view of 
these findings, the questions of near-wall asymptotic 
behavior and Pr dependence of the model are 
addressed simultaneously in [14]. A simple approach 
is adopted to remedy these two deficiencies in heat 
transfer modeling. The approach is based on the solu- 
tion of the transport equations for 0 z and e0 with 
suitable corrections made to the modeled equations 
to allow for proper asymptotic behavior near a wall. 
The heat fluxes are calculated using a simple thermal 
eddy diffusivity model. Furthermore, appropriate 
damping functions; are introduced to account for vari- 
able Pr effects. Thus formulated, the model is quite 
successful in its pr,edictions of pipe and channel flows 
with heat transfer spanning a Pr range from 0.01 to 
10 000. Furthermore, the velocity and thermal von 
Karman constants are calculated correctly. In spite 
of these improvements, the model still invokes the 
assumption of 0 =: 0 at the wall and essentially pre- 
dicts a zero uO for all flow cases considered. 

Most heat tran,;fer calculations solve for the flow 
behavior in the fluid side only and seldom would an 
approach deal specifically with the conjugate problem, 
where there are inleractions between the fluid and the 
solid wall. When tlhe conjugate problem is solved, the 
conditions at the fluid-solid boundary are determined 
rather than specified. Attempts to solve for the true 
boundary conditions at the fluid-solid interface have 
been made [15, 16] and the results show that the 
boundary conditions are functions of the thermal 
activity ratio K and Pr. Except for a few special cases, 
the conjugate problem could not be easily solved 
because of limited computing power. Therefore, this 
limitation dictates that only the fluid side of a con- 
vective heat transfer problem could be simulated. If 
the solid side cannot be simulated, it is necessary to 
make assumptions on the thermal field at the wall. 
Usually, it is easier to invoke a reasonable physical 
assumption for the mean temperature ; such as a con- 
stant wall temperature or a constant wall heat flux. 
The boundary con~dition for 0, on the other hand, is 
very difficult to determine. For the sake of 
convenience, it is usually assumed that 0 vanishes at 
the wall. The effect of this idealized boundary con- 
dition on the calc~alated heat transfer characteristics 
in the near-wall region has been systematically ana- 
lysed in [17]. It is figund that Nu, St and other integral 
heat transfer properties are essentially not affected 
by assuming 0 = 13 at the wall. This assumption only 
affects the calculated 02 but not ® in the near-wall 
region. Even then, all turbulence statistics outside of 
the near-wall region are not influenced by this ideal- 
ized boundary condition. As a result, most of the 
deficiencies found in heat transfer modeling, except 
the inability of two-equation models to calculate uO 
correctly, have been addressed in one way or another. 

Streamwise heat flux could be calculated fairly cor- 
rectly using a second-order model [6]. It has been 
suggested [18] and verified [19] that correct heat trans- 
fer predictions could only be obtained using a tern- 

perature field model that is of lower or equal order 
compared to the velocity field model. In other words, 
at least a second-order velocity field model has to be 
used in conjunction with a second-order heat flux 
model. This could complicate the modeling problem 
immensely in the case of compressible and buoyant 
flows, because the uncoupled flow approximation [18] 
cannot be invoked. For three-dimensional flows, the 
total number of equations to be solved would include 
five mean flow equations, seven equations for -u lu j  
and e, three equations for - u f l  and two equations for 
02 and e0. Aristotle once said, "It is the mark of an 
educated mind to rest satisfied with the degree of 
precision that the nature of the subject admits, and 
not to seek exactness when only an approximation is 
possible" (Nicomachean Ethics, 3rd century BC). In 
this spirit, the heat-flux model should be kept as simple 
as possible while still being able to reproduce the 
dominant physical effects. Therefore, it would be most 
expedient to see k a  two-equation heat-flux model that 
could predict uO reasonably well compared to the 
second-order model. Such a model can be used with 
either a two-equation or a second-order velocity field 
model and substantial savings on computation time 
could result. 

Algebraic models for the heat fluxes have been 
derived by various researchers [20-23]. The devel- 
opment usually follows the approach outlined in [24] 
for the development of an algebraic model for - uiuj. 
The transport equation for uiO is reduced to an 
algebraic equation by assuming that the convective 
and diffusive transport of ufl is proportional to the 
transport of k and 02, which can be expressed as the 
difference between their respective production and dis- 
sipation rates. If, in addition, equilibrium turbulence 
is assumed, this equation can be further simplified 
and a linear system of equations for the vector ufl is 
obtained. In solving this system of equations, a situ- 
ation could occur where the matrix could become 
singular for certain combinations of u,~ and the mean 
gradients of Ui and ®. This is similar to the singularity 
observed in [25] for algebraic Reynolds-stress models. 
Therefore, a straightforward application of these 
algebraic heat-flux models to wall shear flows may not 
be desirable. 

These problems could be avoided if the model pro- 
vides an explicit expression for u~O, i.e. they are 
expressible in terms of the known mean and tur- 
bulence fields. One such model has been developed 
[26] using statistical results from a two-scale direct- 
interaction approximation. However, the model has 
only been applied to calculate air flows with heat 
transfer far from solid boundaries. It has not been 
extended to near-wall flows of fluids with different Pr 
[26]. In practical engineering applications, the ability 
to integrate the model to the wall is most crucial 
because it impacts directly on the evaluation of such 
parameters as Ct, Nu and St, which are of primary 
importance to the development of heat transfer man- 
agement code for power plants, gas turbine engines 
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and other industrial systems with widely varying Pr. 
Therefore, it is practical to develop a heat-flux model 
that could be applied to near-waU flows for a wide 
range of Pr. An alternative to the model of [26] is 
offered by the application of the simple extended 
diffusivity hypothesis outlined in [27] to existing 
algebraic models to render them explicit in ufl. If  the 
resultant heat-flux model is to be valid for near-wall 
flows, it would be expedient to modify a well tested 
near-wall model using the approach of [27]. 

Since a simple thermal eddy diffusivity model that 
is capable of predicting a wide range of wall shear 
flows with varying Pr has already been developed [14], 
the present study will concentrate on the development 
of an explicit algebraic heat-flux (EAHF) model that 
would correctly recover the expression for vO given by 
the near-wall model of [14] ; hereafter called the Simple 
model. This way, all the near-wall corrections pre- 
viously devised could be applied without modi- 
fications and an improved near-wall heat transfer 
model that could yield a correct estimate of uO would 
result. The development of this model relies on the 
hypothesis proposed in [27]. Thus formulated, it can 
be shown that the usual singularities encountered in 
the system of heat-flux equations could be avoided. 
Furthermore, for homogeneous turbulent flows with 
a uniform temperature gradient, the expressions for 
ufl thus derived are essentially similar to those 
obtained by previous researchers [20-23, 26]. The 
model can be used in conjunction with any near-wall 
two-equation or Reynolds-stress models [10, 25] for 
the velocity field, thus greatly simplifying the numeri- 
cal solution of heat transfer problems. It could be 
easily extended to compressible and buoyant flows 
without having to solve additional equations. The 
extension to buoyant flows has been attempted [28]. 
Therefore, this paper only considers the validation of 
the EAHF model against non-buoyant flows. 

AN EXPLICIT ALGEBRAIC HEAT-FLUX MODEL 

The development of the EAHF model starts with 
the high-Reynolds-number version of the heat-flux 
equations [6]. It can be written as 

Duff c?~) - -  ~(7 i 
D~ -- D~o = --u, Uk ~x k - ui, O~x k 

- c ' ° l  (1) 

where Dlo is the transport of u~O due to turbulent 
diffusion, z is an appropriate time scale and C~o and 
C2o are model constants. In [6], only the velocity time 
scale is used in the modeling of ufl even though it was 
suggested that both the thermal and velocity time 
scales are important and should be adopted [21]. Two 
different mixed time scales have been proposed by 
previous researchers; these are ~ = x/[(k/e)(~/eo)] [7, 
141 and z = (elk)(Orl~) [8, 261. To date, neither of the 
two time scales has been shown to be clearly superior 

to the other one. However, it will be seen later that 
the use of z = x/[(k/e)(~/eo)] allows the expression of 
vO deduced from the Simple model to be recovered; 
an expression shown to be quite valid for a variety of 
flows covering a wide range of Re and Pr [14]. For 
this reason, ~ = x/[(kle)(OZlso)] seems to be a more 
suitable choice for the present study. 

Using the assumption of similarity between_ the 
transport of ufl and the transport o fk  and 02, the left- 
hand side of (1) can be approximated by [24] 

DuiO : uiO 
D~ - D~o = ( P -  ~) + ~ -  (2Po - 2s0). (2) 

If equilibrium turbulence for both the velocity and the 
thermal field is assumed, the right hand side of (2) 
becomes zero. Hence, the transport of ufl can be neg- 
lected in (1) compared to other terms in the equation. 
Equation (1) can therefore be simplified to 

1 k 
- u,---0 ~010 X/(~ 0 z \ (  0~) - - ~ 0 , \  

(3) 

which constitutes a linear system of alegbraic equa- 
tions for ufl. 

So far, the derivation follows the classical approach. 
It should be pointed out that (3) gives an implicit 
expression for ufl and singularities could occur for 
certain behavior of ~ and the mean gradients of U~ 
and O. Therefore, a different approach is required to 
remedy this situation. The expression can be made 
explicit by using a successive approximation method. 
In other words, simple gradient transport models are 
assumed for ~ and uiO on the right-hand side of (3). 
This is equivalent to taking the first approximation in 
the expansions for a gradient transport representation 
of ~ and uiO in the evaluation of (3). Assu_ ming 
simple gradient transport models for ~ and ufl [13, 
14] to be given by 

. 0 ,  
- UiUk = vt t~-~x k + (4) 

- - ~ ' 0  = O~ t -  (5)  cqxl 

the resulting equation, after re-arrangement, takes the 
form 

k 
-uT0 : 3Clo ,k[\~eollaxl ~ o ~ ( ~ o )  

x ((2vt + (1 - -  C2o)O~t)$k 4:- (1 -- C20)cqrh,k) ~ (6) 

where the strain rate tensor Sij and the rotation rate 
tensor ~ j  are used. These notations were first intro- 
duced in [24] and later adopted in [25, 26]. The eddy 
diffusivities are given by 
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k 2 

vt = c~f u T (7a) 

[k  ~2-~1/2 

where the damping functions f ,  andf~ are introduced 
to allow direct imegration of the model to the wall 
in order to satisfy the asymptotic behavior of the 
turbulence statistics in the near-wall region [13, 14]. 
It can be seen that the form of this equation is similar 
to the extended thermal eddy diffusivity model pro- 
posed in [27], i.e. 

= D ~ .  (8) 

The components of D~ are determined by comparing 
coefficients between (6) and (8). 

Thus formulated, the first term in (6) is affected by 
both the velocity and the temperature time scales and 
is similar to the Simple model given in (7b). The 
second term gives a non-zero turbulent heat flux in the 
streamwise direction even when there is no streamwise 
temperature gradient. In other words, consistent with 
the thermal physics, the turbulent eddies generate a 
uO due to their interactions with the mean temperature 
gradient normal to the streamwise direction. It can be 
seen that the mode, led equation for ufl derived here is 
always regular. Therefore, the approximations also 
allow the numerical difficulties to be avoided. 

If (6) is used to calculate the heat fluxes for flows 
where the thin she, ar layer approximation holds, the 
result for vO is of the same form as that given in (5), 
o r  

_ 

-vO = 3Clo ~[ \e  eo J Oy 

while the result for uO is given by 

(9) 

(vt + (1 
6 0 \  

× -C2o)e , )~yy)~y .  (10) 

The first term on the right-hand side of (10) is equi- 
valent to that given by the Simple model while the 
second term represents an improvement to the esti- 
mate of uO. Since tile streamwise temperature gradient 
is small in channel/pipe and boundar__y-layer flows, the 
first term alone cannot determine uO properly. With 
the addition of the second term, which relates uO to 
the cross-stream temperature gradient, an improved 
estimate can be obtained. Note that if (3) is solved 
directly for the case of channel flows, thus leading to 
a classical algebraic model, the results yield explicit 
expressions for uO and vO. For this special case, the 
singularities mentioned above are not present. Only 
for truly two- or three-dimensional problems would 

they occur. It should be pointed out that, if the small 
terms due to the streamwise temperature gradient are 
neglected, the channel flow results yield very similar 
expressions for both uO and vO compared to (9) and 
(10). In particular, (9) could be interpreted as a simpli- 
fied version of the channel flow result assuming iso- 
tropic Reynolds stresses. 

The model constants Cw and C2o have not been 
specified. If the values, C~o = 3 and C2o--0.4, 
adopted in [6] are used in the present formulation, the 
Simple model could not be recovered correctly. Part 
of the reason could be due to the fact that in [6] only 
the velocity time scale is used in the modeled equation. 
In order to obtain the equivalent constant for the 
mixed time scale used here, the constant Clo has to be 
divided by x/(2R). According to [29], R g 0.6 for 
flows with Pr = 0.71. If this value of R is used to 
calculate Clo, a value Clo = 3.28 is obtained. Further- 
more, if the constant coefficient in (9) is taken to be 
the constant ca andf~ = 1 is assumed as in the Simple 
model, a value of ca = 0.203 is determined. However, 
it should be pointed out that the term v 2 appears in 
the relation for vO derived from (3) instead of 2/3k 
appearing in (9). For wall shear flows v 2 ~ 1/3k [11], 
therefore, an extra factor of about two appears in (9). 
In order to recover the Simple model correctly, the 
constant 2/(3C~o) in the first term of the right-hand 
side of (6), (9) and (10) is replaced by cA ~ 0.095, 
while Clo = 3,28 is retained in the second term. The 
value of C2o in (6) can be adopted without modi- 
fication from [6] as C2o = 0.4. 

With this choice of model constants, the expression 
for vO is identical to that given by the Simple model, 
therefore, the near-wall corrections used in that model 
can be adopted without change. This means that the 
coefficient (2/3Clo)k[(k/e)(O2/e,o)] 1/2 in (9) and (10) 
should be replaced by cq. With this substitution and 
the near-wall damping functions given in [13, 14], the 
EAHF model in its final form can be written as 

--UiO : O~ l ~X i Clo ~ k  e eoJ 

× {[2vt + ( 1 -  C20)~,]Si~ + ( 1 -  C20)c~to31k} ~x~ (11) 

w h e r e  ~t a n d  v t are given by equations (7a) and (7b), 
respectively. In this final form, (11) with C~o = 3.28 
and C2o = 0.4 is very similar to a scalar flux model 
derived by Yoshizawa [26]. The main advantage of 
(11) is that it is straightforward to derive. Further- 
more, the model recovers the expression for vO as 
given by the Simple model which has been validated 
against flows with heat transfer covering a wide range 
of Re and Pr. However, the major differences between 
(11) and that given in [26], besides the fact that (11) 
represents a near-wall model, lie in the model con- 
stants and the time scales adopted. This way of deriv- 
ing the model and determining the constants may not 
be very rigorous, but its similarity to Yoshizawa's 
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expression shows that the present approach used to 
derive (11) is sound. 

The damping functions associated with cot and vt are 
quoted here as 

Ca 
ft. = (1 - f~ l )  R~tl/4 +f)., (12) 

fa, = [ 1 - e x p ( - - y + / A + ) ]  ~ (13) 

=(,+  14, 
x/ Ret] 

C~ = 0.4/Pr ~/4 for Pr < O.1, C~1 = 0.7/Pr where 
for Pr ~ 0.1 and A + = lO/Pr for Pr < 0.25, A + = 
39/Pr 1/16 for Pr >1 0.25 are adopted because they have 
been shown to yield excellent predictions for a wide 
range of Re and Pr and for different wall thermal 
boundary conditions [14]. With this formulation, uO 
does not  exhibit the proper near-wall behavior of y2. 
This could not  be achieved without the introduction of 
even more damping functions. Since vO still dominates 
wall shear flows, an incorrect asymptotic behavior of 
uO in the near-wall region could be tolerated. Even so, 
the E A H F  model provides a significant improvement 
to the prediction of uO ; allowing the proper order of 
magni tude to be estimated under the condition where 
the streamwise gradient of ® is approximately zero. 

THE MODELED EOUATIONS 

Channel and pipe flow experiments are used to vali- 
date the proposed model. Consequently, the govern- 
ing equations in their respective physical coordinates 
are rather simple and are fairly easy to deduce from 
the tensor equations. Therefore, in the following, only 
the modeled equations are given. The near-wall Reyn- 
olds-stress model of [30] is used to calculate the vel- 
ocity field while the near-wall two-equation model of 
[14] is adopted for the calculation of 02 and e0. These 
modeled equations, in Cartesian tensor form, are 
quoted here for reference, or 

Du,~ a /" ~?u~.\ f 
Dt -- dxk tV~xk  ) + D'j 

/__ aOj 0 6 , \  
(15) 

De O [ Be\ 0 / k cte\ 

: tv ) + t c 
e ~ g:  

+ C ~ , ~ P - C , 2 ~ e + ¢  (16) 

-2u~Off~x-2eo (17) 

Deo c~ ( ~ )  O { k _ _ a e o \  eo 

e Eo~ go g 

(19) 

e 2 
I~ff ~--- - -  C 1 (1 - - f w , )  ~ u~u~-~rok) 

- ("l - ~*fw, ) (Pij - 6ijP) 

( k3/2~ 
-- fll (D~j-- 6ijP) - 2 |71 -- Cw 

t 

e 
--fwl ~ u~iu~n,nj + UjUknkni ) (20) 

e 
e. = -fwl)ea.  +fw, 

uiuj + uiuknknj + ujuknkni + ninjukulnknl 
× (21) 

1 + 3~utnknt/2k 

/ g2 _ eg 1.5C~lP\ ) = f~2 ~1.5 ~- - -2~-  -- (22) 

=fw:o{(Cd,_4)~ go , g 4,° ~eo + cd5 ~eo 

e~ 2 ÷(2--Cdl-PrCdz)~°P*~. (23) 
o / 

The damping functions fw~ = exp [ -  (Ret/150)2], 
fw2 = exp [ -  (Ret/40) z] and fw:0 = exp [ -  (Ret/80) 2] 
are introduced to ensure that the near-wall corrections 
would go to zero far away from a wall and the model 
constants C,, C,~, C~2, Co 2, C, 0, Cd~, Cd2, Cd3, Cd4, Cds, 
Cs, C1, C2, ~ ,  ,*,  fl~, 71 are specified as 0.10, 1.50, 
1.83, 0.11, 0.11, 1.80, 0, 0.72, 2.20, 0.80, 0.11, 3.0, 0.4, 
0.7636, 0.45, 0.1091, 0.1818, respectively. On the other 
hand, the modified dissipation rates, g = e - 2 v k / y  2 
and g = e-2v(c~x/k/Oy) 2, are introduced to render the 
e-equation regular as a wall is approached. Wall 
reflection effects are also modeled in (20) and this 
gives C~ = - 0.00805 + 0.00519. In (Re) for pipe and 
channel flows. Finally, the mean flow boundary  con- 
ditions are no slip at the wall and constant  wall heat 
flux or constant  wall temperature, while the boundary  
conditions at y = 0 for the turbulence field are given 
by uiu: = 02 = O, aw = 2v(~?~/k/Oy) 2 and (e0)w = 
(~/2)(0~0~/ay ay). 

The equations for fully-developed flows are ordi- 
nary differential equations. They are relatively easy 
to solve using existing numerical algorithms. In the 
present study, these equations are solved using a 
simple relaxation method [9]. Iterations based on an 
initial guess for the velocity and temperature fields are 
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carried out to ob~ain a convergent solution to the 
governing equations. A parabolic code [31] is used 
to calculate entrartce flow in a pipe or channel. The 
entrance flows to be calculated have a fully-developed 
velocity field. Therefore, inlet conditions for the vel- 
ocity field are simply specified from a previous run 
that has achieved a fully-developed state. On the other 
hand, the inlet conditions for the thermal field are 
more difficult to specify. The following procedure is 
adopted here after numerous experiments. A constant 
mean temperature is assumed, while 02 and e0 are 
calculated by 07++ = k  ÷ and e~ + ~0.5~ +. The 
dimensional values at the inlet are then obtained by 
setting 07 = 0 7+ + 0 + +~ and e0 = e~- + ®+ +~u~/v where 
®+ + is the friction temperature ®~ divided by a factor 
ranging from 50 to ~ 100. Various tests show that the 
exact value of this factor only exerts an insignificant 
influence on the results. 

MODEL VALIDATION 

The major improvement in the present model is the 
prediction of uO. Therefore, it is necessary to validate 
this prediction against a variety of data. The cal- 
culations are validated against DNS data [3, 5] and 
experimental measurements [32-34]. In addition to 
these calculations, entrance flow heat transfer is also 
carried out for a wide range of Re. Streamwise heat 
flux affects the development of Nu and the centerline 
temperature in the thermal entrance region. If uO is not  
calculated correctly, the predictions of the centerline 
temperature and Nu will also be in error. Therefore, 
it is important  to verify the model against this type of 
flow. The calculations are compared with exper- 
imental measurements [34-36]. In addition, whenever 
data are available, the calculations are also compared 
with the evolution of the mean temperature field in 
the entrance region. 

Since the EAHF' model yields the same expression 
for vO as the Simple model, the calculated ®, 02 and 
vO are hardly affected by the improved model for uO. 
This is obvious from the mean temperature equation 
and the fact that the expression for vO is exactly the 
same as that given by the Simple model. A major 
difference occurs in the production of 02 due to the 
streamwise temperature gradient. However, this term 
is still small compared to the production due to nor- 
mal temperature gradient. As a result, the prediction 
of 02 is essentially unchanged compared to the pre- 
vious results [14]. Some results are shown here to 
demonstrate that ~:hese quantities are little affected. 
The remaining comparisons are made with uO only. 

The first comparisons are made with DNS data 
obtained from fillly-developed channel flows at 
Re = 5600 [3] and Re = 4560 [5]. Predictions based 
on the Reynolds-st:tess model for the velocity field and 
both the E A H F  and Simple model for the temperature 
field are compared with the data of [5], while only the 
E A H F  model calculations are compared with the data 
of [3]. The comparisons with the DNS data of [5] at 
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Fig. 1. Comparison of calculated mean temperature with 
DNS data. 
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Fig. 2. Comparison of the calculated normal heat flux with 
DNS data. 
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Fig. 3. Comparison of the calculated rms temperature vari- 
ance with DNS data. 

Pr = 0.71 are shown in Figs. 1-4, while those with the 
data of [3] at Pr = 0.1, 0.71 and 2.0 are given in Fig. 
5. These comparisons show that ® (Fig. 1), vO (Fig. 
2) and 02 (Fig. 3) are essentially not  affected by the 
E A H F  model. There is a very slight difference between 
the two model calculations though. The smallest 
difference occurs in the prediction of O, while 02 shows 
the greatest change. In any case, the differences are 
small and are not  enough to significantly influence the 
calculated Nu and St. 

The Simpl__e model essentially yields a zero__ pre- 
diction for uO. In contrast, the prediction of uO by the 
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Fig. 4. Comparison of calculated streamwise heat flux with 
DNS data. 
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Fig. 6. Comparison of calculated streamwise heat flux with 
measurements. 

E A H F  model  is vastly improved even though the peak 
values are substantially underpredicted (Figs. 4 and 
5). It seems that this under-prediction is a function of  
Re and Pr. At Pr = 0.1, the E A H F  model  yields a 
fairly correct prediction of  uO (Fig. 5). The DNS cases 
considered here have very low Re, therefore, the 
assumption of  equilibrium turbulence invoked to 
deduce (3) is not  quite valid. It is reasonable to expect 
that the agreement between predictions and measure- 
ments would improve as Re increases ; see later com- 
parisons (Figs. 6 and 7). There is also a rather large 
discrepancy between the predicted uO and the D N S  
data near the pipe center. Overall, the E A H F  model 
yields a prediction of  uO close to the calculation of  the 
second-order model  of  [9]. The second-order model 
performs better near the centerline because the E A H F  
model  predicts a zero value for uO as a result of  the 
gradient transport assumption even though exper- 
imental measurements show that uO at this location is 
non-zero. If  a possible near-wall extension of  the 
model  of  [26] is used to calculate the DNS data, the 
same discrepancies could be expected. The reason is 
that Yoshizawa's [26] model is similar to that given 
by (1 l) except that the model  constants and time scales 
adopted are different. Changing the model  constants 

could change the peak values calculated for uO, but 
they will also_ affect_the predictions of  other quantities 
such as ®, 02 and vO. As for changing the time scales, 
the effects are nonlinear and the calculations could 
lead to quite different results altogether. Finally, the 
comparisons with the pipe flow experiment [34] are 
not  shown because the calculated differences between 
the E A H F  model  and the Simple model are essentially 
identical to those plotted in Figs. 1 3. Furthermore,  
these results have been previously reported [13, 14]. 

Further  streamwise heat flux comparison (Fig. 6) is 
carried out with fully-developed pipe flow measure- 
ments [32] at Re = 50 000 and the second-order model 
of  [9]. No  comparison is made in the immediate near- 
wall region because of  the rather coarse resolution of  
the experimental data. Over most  of  the flow field, the 
prediction of  the E A H F  model is in better agreement 
with data than that of  the second-order model. The 
difference between the two calculated results is, how- 
ever, relatively small except, again, near the centerline. 
Note  that the E A H F  model  predicts a larger peak 
value of  uO compared to the second-order model. A 
final comparison is carried out with the fully- 
developed pipe flow measurements of  [33] at 
Re = 40 000. The E A H F  model is able to correctly 
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Fig. 5. Comparison of calculated streamwise heat flux with 
DNS data. 
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Fig. 7. Comparison of calculated streamwise heat flux with 
measurements. 
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predict the magnitude as well as the location of the 
peak in uO (Fig. 7). Over most of the flow field, the 
prediction is in fair agreement with data. Near the 
centerline, the model again yields a vanishing heat flux 
while the data shows a small, but non-zero value. On 
the other hand, the Simple model gives a uO that is 
essentially zero across most of the pipe. The largest 
calculated value of -uO + = 0.015 occurs at the pipe 
center. Even then, it is more than one order of mag- 
nitude smaller than the measured value of about 0.3. 
This clearly shows the great improvement due to the 
EAHF model. Calculations of other fully-developed 
pipe flow measurements [34] with Re = 71 200 and 
Pr -- 0.71 have also been made. Data on uO are not 
available. The calculations are compared with the 
measured ® and v0 only. Results obtained are similar 
to those shown in Figs. 1 and 2. Therefore, the com- 
parisons are not reported here. 

Calculations up to this point are performed using 
the Reynolds-stress model of [30] where Cw depends 
on Re. This constant is introduced as the coefficient 
of a term to model wall reflection effects. The wall 
reflection term imroduces a new length scale into the 
Reynolds-stress model. This length scale may be 
appropriate for cases in which the temperature can be 
regarded as a passive scalar. In other words, for the 
above calculations, the wall-reflection term would not 
present a major problem. However, for flows with 
high heat transfer rates and buoyant and compressible 
flows, the length scale imposed by the wall-reflection 
term could lead to poor results. After all, this term is 
introduced to ensure that the near-wall Reynolds- 
stress model would reproduce the log-law region of the 
velocity field correctly. In buoyant flows, the extent of 
the log-law region is modified by buoyancy effects. 
For flows with high Froude numbers, the log-law 
region could disappear entirely [37]. A wall reflection 
term that enforces a log-law region would thus lead 
to poor results. Recently, a new near-wall Reynolds- 
stress model based on the quasi-linear pressure-strain 
model of [38] has been formulated and validated [31]. 
One major advantage of the new model is that the 
log-law region is calculated correctly without a wall 
reflection term. Therefore, it is better suited for more 
complex flows. IrL view of this, the thermal entrance 
flow calculations are carried out using this new near- 
wall model [31]. Another reason for this change is to 
verify that the EAHF model is not unduely affected 
by the choice of 1:he velocity field models as long as 
they are of the same closure level. This new model 
combination has been validated against some of the 
simple flows discussed above and the same results as 
before are obtained. 

The only difference between the near-wall Reyn- 
olds-stress closure of [31] and that of [30] is in the 
modeling of the pressure strain tensor. As a result of 
this modification, the model constants in (20) and 
(22) are changed :slightly. For completeness sake, the 
model terms for H 0 and ¢ are listed below. They are 
given by 

ILj = - ( 2 c ,  ~ + c ' P ) ( 1  --fwl)bo+ C2 (1 - f w , )  

t 
× 8(bik bkj -- ~ 6 J I )  

-- (c~ 1 -- c~ *fwl ) (Pij -- 6isff) -- ,81 (Dij -- 3ifl ~) 

- 2(?t - fwlT* + ? nll2 )kSo 

- -~ I x ~  I v ~ l n k n s +  ~ i  I v ~ l n k n ~ l  
3 \OXra \ (TXm J (TXm t lTXm /I /1 

1 a f a~--~7k 
+ ~ ~ l V ~ l n k n p n i n s  

J ~TX m \ VXm ] 
(24) 

f ~ ~ g2 8e~ 
~ = f w 2 t - L ~ z P + M ~ - - N ~ )  (25) 

where the model constants different from those given 
above are specified in [38] as C1, C2, C*, C*, oq, o~*, 
/~t, Yl, ?*, L, M, N, equal to 3.4, 4.2, 1.8, 1.3, 0.4125, 
-0 .29,  0.2125, 0.01667, 0.065, 2.25, 0.5, 0.57, respec- 
tively, fwl = exp [ -  (Ret/200) 2] and fw2 remain the 
same. 

The comparisons of the calculated Nu with 
measurements [35, 36] are shown in Fig. 8. In general, 
the Nu behavior is reproduced quite well. The only 
significant difference occurs in the region very close to 
the entrance of the heated section, where x is taken to 
be zero. The final asymptotic values of Nu correlate 
well with measurements even though the largest dis- 
crepancy occurring at Re = 71 000 is about 10%. Note 
that only the heat transfer coefficient Ch and the pipe 
diameter D are reported in [35]. Therefore, the thermal 
conductivity (o~pcp) had to be estimated. Since the 
temperature for Re = 71 000 is not given, there could 
be some error introduced in the estimate of Nu. On 
the other hand, Nu is reported directly in [36] and the 
agreement between calculation and data is very good 
beyond about one diameter downstream of the 
entrance to the heated section. The calculated center- 
line temperature is compared with data for three cases 
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Fig. 9. Comparison of the calculated centerline temperature 
in the thermal entrance region with measurements• 
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Fig. 11. Mean temperature comparison in a fully-developed 
pipe flow. 

at high Reynolds numbers (Fig. 9). Again, agreement 
with data is reasonable with the largest errors occur- 
ring in the region near the entrance to the heated 
section. 

The reason for the discrepancy near the entrance to 
the heated section could be due to the uncertainty in 
the estimate of the inlet conditions as well as the fact 
that the parabolic assumption is strictly not applicable 
at this location. Therefore, the virtual origin of the 
thermal boundary layer of the experiments is not 
necessarily coincident with that assumed for the cal- 
culations. For this reason, the comparisons of the 
temperature profiles in Fig. 10 are carried out by 
requiring that the calculated and measured tem- 
perature profiles be in agreement at the first exper- 
imental station. Thus determined, the virtual origin is 
found to be at x/D = 0.31 downstream of the entrance 
to the heated section. After this adjustment, the cal- 
culated mean temperature profiles are in good agree- 
ment with data at each location. This means that, 
with the exception of the region within less than one 
diameter, the EAHF model correctly predicts the evo- 
lution of the thermal field. Beyond x/D = 40, the tem- 
perature field becomes fully developed and the fully- 
developed temperature profile (Fig. 11) recovered is 
essentially identical to that obtained using the model 
of [30] to calculate the velocity field. Therefore, the 
EAHF model is fairly independent of the choice of 
velocity models used. 
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Fig. 10. Comparison of the calculated centerline temperature 
profiles in the thermal entrance region with measurements. 

CONCLUSIONS 

An explicit algebraic heat-flux (EAHF) model has 
been derived for the calculation of the turbulent tem- 
perature field. The derivation invokes equilibrium tur- 
bulence to reduce the transport equations to a system 
of linear equations and the final EAHF model is 
obtained by adopting a simple approximation concept 
proposed by Batchelor [27]. Analysis of the model 
shows that the same near-wall damping functions as 
given in the Simple model can be used to obtain an 
asymptotically correct near-wall behavior for vO. As 
for uO, no attempt has been made to obtain the correct 
asymptotic near-wall behavior because this would 
require the introduction of additional damping func- 
tions. Besides, this mismatch does not seem to have 
any significant effects on the thermal properties for all 
the flow cases tested. 

The EAHF model is validated against fully 
developed channel and pipe flows and the calculations 
are compared with DNS data, experimental measure- 
ments and Simple and second-order model predic- 
tions. The governing equations show that there should 
be very little difference between the calculated (9, 0 2 
and vO obtained from the EAHF and the Simple 
model. This conclusion is essentially verified by the 
present calculations. Predictions of uO, however, are 
much more realistic compared to the Simple model 
and are in much better agreement with data and the 
second-order model results. The best correlation with 
data is obtained at high Reynolds numbers and in the 
log layer. This is not surprising, since equilibrium 
turbulence is assumed in the derivation of the model. 
The importance of an improved prediction of uO is 
not obvious for simple flows, since it hardly changes 
19 and the thermal turbulence quantities other than 
uO. However, it is very important to the calculations 
of buoyant turbulent flows where uO can have a sig- 
nificant effect on the predicted thermal field. The 
results presented also show that the EAHF model 
performs well with two different near-wall Reynolds- 
stress model. In addition, the development of the tem- 
perature field in the thermal entrance region of a pipe 
flow at different Reynolds numbers is correctly cal- 
culated. 
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